4.7 Article

Defective Nrf2-dependent redox signalling contributes to microvascular dysfunction in type 2 diabetes

期刊

CARDIOVASCULAR RESEARCH
卷 100, 期 1, 页码 143-150

出版社

OXFORD UNIV PRESS
DOI: 10.1093/cvr/cvt125

关键词

Type 2 diabetes; Oxidative stress; Myogenic tone; NRF2; Sulforaphane

资金

  1. Rosalind Franklin University of Medicine Science
  2. American Heart Association

向作者/读者索取更多资源

In type 2 diabetes, antioxidant depletion contributes to increased oxidative stress in the microvasculature. The current study was designed to assess how oxidative stress contributes to functional changes in the microvasculature, and determine the importance, and the effects of pharmacologically targeting, the transcription factor Nrf2. Pressure myography was used to measure myogenic constriction in mesenteric arterioles from diabetic (db/db) and non-diabetic (db/m) mice. Compared with db/m, myogenic constriction was larger in db/db, independent of the endothelial cell layer, and directly correlated with elevated basal and pressure-induced reactive oxygen species (ROS) production. Nrf2 was depleted in db/db vessels and associated with down-regulation of Nrf2-regulated genes. Notably, expression of GCLC and GCLM, enzymes important for glutathione (GSH) synthesis, was dramatically reduced, as was total cellular GSH. Normal myogenic function was restored to db/db arterioles by incubation with cell-permeant GSH. Similarly, the db/db myogenic phenotype was recapitulated in the db/m vessels by pharmacological GSH depletion. Treatment with the Nrf2-activator sulforaphane increased Nrf2 and promoted its nuclear localization and increased GCLC and GCLM expression in both db/m and db/db. Sulforaphane dramatically lowered ROS signalling in db/db and reduced myogenic tone to levels similar to that seen in db/m vessels. Depleted Nrf2 and expression of its dependent genes compromises antioxidant capacity resulting in dysfunctional myogenic tone in diabetes that is reversed by the Nrf2-activator sulforaphane.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据