4.6 Article

Cooperative molecular recognition of dyes by dyad and triad cyclodextrin-crown ether conjugates

期刊

ORGANIC & BIOMOLECULAR CHEMISTRY
卷 2, 期 10, 页码 1542-1548

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b402841d

关键词

-

向作者/读者索取更多资源

Three beta-cyclodextrin (beta-CyD) derivatives with crown ether units, that is N-(4'-benzo-15-crown-5)-6-imino-6-deoxy-beta-CyD ( 2), 6,6'-[N-(4,4'-dibenzo-18-crown-6)-imino]-bridged bis(beta-CyD) (3), and 2,2'-[O-(4',5'-benzo-15-crown-5)-ethyl]-bridged bis(beta-CyD) (5), were synthesized as cooperative recognition receptor models. Their molecular binding behavior with four representative fluorescent dyes, i.e., ammonium 8-anilino-1-naphthalenesulfonate (ANS), sodium-6-toluidino-2-naphthalene-sulfonate (TNS), Acridine Red (AR) and Rhodamine B (RhB), was investigated in buffer solutions (pH = 7.20) at 25 degreesC by means of circular dichroism, NMR and fluorescence spectroscopy. 2D-ROESY experiments showed that dyad host 2 and triad host 3 adopted a CyD- guest-crown ether binding mode, while triad host 5 adopted a CyD- guest-CyD binding mode, upon inclusion complexation with guest molecules. Therefore, hosts 2 and 3 showed high molecular recognition ability towards charged guests, giving an enhanced binding ability up to 115 times for ANS by 3 and fairly high molecular selectivity up to 1450 times for the ANS/AR pair by 2 as compared with native beta-CyD in an aqueous phosphate buffer solution. On the other hand, host 5 was found to be able to effectively recognize the shape of a guest molecule, showing significantly higher binding ability towards linear guests. The binding affinities and molecular recognition abilities of these CyD-crown ether conjugates towards guest molecules are discussed from the viewpoint of electrostatic and/or hydrophobic interactions, size/shape-fit concept, and multiple recognition mechanism between host and guest.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据