4.2 Article

Accuracy of geolocation estimates for flying seabirds

期刊

MARINE ECOLOGY PROGRESS SERIES
卷 266, 期 -, 页码 265-272

出版社

INTER-RESEARCH
DOI: 10.3354/meps266265

关键词

geolocation; error estimation; kernel analysis; smoothing; albatrosses

向作者/读者索取更多资源

Geolocation (Global Location Sensing or GLS logging) using archival light-recording tags offers considerable potential for tracking animal movements, yet few studies of flying seabirds have exploited this technology. Our study evaluated its effectiveness for determining foraging ranges of black-browed albatrosses Thalassarche melanophrys fitted simultaneously with GLS loggers and satellite-transmitters (Platform Terminal Transmitters, PTTs). After some preliminary validation, the position of an albatross could be determined by geolocation with a mean error +/- SD of 186 +/- 114 km (SDs of 1.66degrees and 1.82degrees of latitude and longitude, respectively). Errors from identical static loggers were lower (mean +/- SD of 85 +/- 47 km, with overall SDs of 0.61degrees and 0.99degrees of latitude and longitude, respectively) and less variable, with the difference attributable to variation in sensor orientation, intermittent shading by plumage, and the difficulty of correcting for extensive, potentially non-linear movements of flying birds. Iterative smoothing reduced both the mean error and the inflation of kernel ranges derived from GLS data, but over-smoothing contracted the extremes of the range. This reduced the overlap with radial cores apparent in the control data, and should be avoided for multinuclear GLS fix distributions. The accuracy of GLS tags is more than adequate for tracking migration and breeding-season foraging ranges of pelagic species, and for identifying broad-scale habitat preferences, overlap and potential conflict with commercial fisheries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据