4.8 Article

Ethylene-dependent and -independent processes associated with floral organ abscission in Arabidopsis

期刊

PLANT PHYSIOLOGY
卷 134, 期 1, 页码 194-203

出版社

AMER SOC PLANT BIOLOGISTS
DOI: 10.1104/pp.103.028027

关键词

-

向作者/读者索取更多资源

Abscission is an important developmental process in the life cycle of the plant, regulating the detachment of organs from the main body of the plant. This mechanism can be initiated in response to environmental cues such as disease or pathogen, or it can be a programmed shedding of organs that no longer provide essential functions to the plant. We have identified five novel dab (delayed floral organ abscission) mutants (dab1-1, dab2-1, dab3-1, dab3-2, and dab3-3) in Arabidopsis. These mutants each display unique anatomical and physiological characteristics and are governed by three independent loci. Scanning electron microscopy shows delayed development of the flattened fracture plane in some mutants and irregular elongation in the cells of the fracture plane in other mutants. The anatomical observations are also supported by breakstrength measurements that show high breakstrength associated with broken cells, moderate levels for the flattened fracture plane, and low levels associated with the initial rounding of cells. In addition, observations on the expression patterns in the abscission zone of cell wall hydrolytic enzymes, chitinase and cellulose, show altered patterns in the mutants. Last, we have compared these mutants with the ethylene-insensitive mutants etr1-1 and ein2-1 to determine if ethylene is an essential component of the abscission process and find that although ethylene can accelerate abscission under many conditions, the perception of ethylene is not essential. The role of the dab genes and the ethylene response genes during the abscission process is discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据