4.7 Article

Intracellular or extracellular heat shock protein 70 differentially regulates cardiac remodelling in pressure overload mice

期刊

CARDIOVASCULAR RESEARCH
卷 88, 期 1, 页码 140-149

出版社

OXFORD UNIV PRESS
DOI: 10.1093/cvr/cvq182

关键词

Hypertension; Angiotensin; HSP70; Cardiac Hypertrophy; Fibrosis

资金

  1. National Major Basic Research Program of China [2006CB503808]
  2. National Nature Scientific Foundation [30672468]
  3. Ministry of Education
  4. Ministry of Personnel of PRC

向作者/读者索取更多资源

Innate and adaptive immune responses are associated with the development of hypertension-induced myocardial hypertrophy and fibrosis. As a result, we investigated whether heat shock protein (HSP) 70, which is a molecule of damage-associated molecular patterns, could induce inflammation in the myocardium and promote the development of hypertension-induced cardiac hypertrophy and fibrosis. We found that HSP70 serum levels, as well as the amount of HSP70 translocation to the cardiomyocyte membranes and the interstitial space, were elevated in the hypertensive mice caused by abdominal aortic constriction (AAC). Transcriptional inhibition of HSP70 expression by a specific heat shock transcript factor inhibitor, KNK437, reduced the serum level, and the re-distribution of HSP70. It promoted myocardial hypertrophy and cardiac dysfunctions although it protected animals from AAC-induced cardiac fibrosis. On the other hand, the functional antagonism of HSP70 by an anti-HSP70 antibody attenuated AAC-induced cardiac hypertrophy and fibrosis without adverse haemodynamic effects. The cardioprotective effect of the anti-HSP70 antibody was largely attributed to its ability to block AAC-activated immune response in the heart, as was indicated by suppressing the hypertension-enhanced conjugation of HSP70 with toll-like receptor 4, reducing heart-infiltrating macrophages, decreasing the expression of pro-inflammatory factor monocyte chemoattractant protein-1 and profibrotic factor transforming growth factor beta 1, and attenuating pro-hypertrophy signal MAPK P38 and ERK. These results indicate that intracellular and extracellular HSP70 have different roles in the regulation of cardiac remodelling and function in response to hypertension. Extracellular HSP70 is a potential therapeutic target against cardiac hypertrophy and fibrosis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据