4.4 Article

Linking protein fractionation with multidimensional monolithic reversed-phase peptide chromatography/mass spectrometry enhances protein identification from complex mixtures even in the presence of abundant proteins

期刊

RAPID COMMUNICATIONS IN MASS SPECTROMETRY
卷 18, 期 6, 页码 643-650

出版社

WILEY
DOI: 10.1002/rcm.1376

关键词

-

向作者/读者索取更多资源

Recently, multidimensional shotgun proteomics has proven to be an alternative technology able to identify hundreds of proteins from single samples. Two major limitations of the technology are the presence of high abundance proteins (e.g. RUBISCO in plant leaf tissue) and the enormous number of co-eluting peptides that overstrain the loading and resolving capacity of conventional particle-packed columns as well as the capacity of electrospray ionisation due to ion suppression. Here, the coupling of fast performance liquid chromatography (FPLC) pre-fractionation of an Arabidopsis leaf protein extract and subsequent two-dimensional liquid chromatography/mass spectrometry with improved resolution using a monolithic silica C18 capillary column allowed the identification of 1032 unique proteins in a single 4 mg total protein plant leaf tissue sample. The reassignment of peptide IDs to distinct FPLC protein fractions enhances the identification procedure, especially in the case of present protein isoforms. The proposed strategy is useful to detect proteins otherwise not seen in conventional multidimensional chromatography/mass spectrometry approaches. Copyright (C) 2004 John Wiley Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据