4.7 Article

Cardiac Rac1 overexpression in mice creates a substrate for atrial arrhythmias characterized by structural remodelling

期刊

CARDIOVASCULAR RESEARCH
卷 87, 期 3, 页码 485-493

出版社

OXFORD UNIV PRESS
DOI: 10.1093/cvr/cvq079

关键词

Atrial arrythmias; Structural remodelling; Atrial conduction disturbance; RacET

资金

  1. Deutsche Forschungsgemeinschaft (DFG) [KFO 196]
  2. ADUMED foundation
  3. HOMFOR program

向作者/读者索取更多资源

The small GTPase Rac1 seems to play a role in the pathogenesis of atrial fibrillation (AF). The aim of the present study was to characterize the effects of Rac1 overexpression on atrial electrophysiology. In mice with cardiac overexpression of constitutively active Rac1 (RacET), statin-treated RacET, and wild-type controls (age 6 months), conduction in the right and left atrium (RA and LA) was mapped epicardially. The atrial effective refractory period (AERP) was determined and inducibility of atrial arrhythmias was tested. Action potentials were recorded in isolated cells. Left ventricular function was measured by pressure-volume analysis. Five of 11 RacET hearts showed spontaneous or inducible atrial tachyarrhythmias vs. 0 of 9 controls (P < 0.05). In RacET, the P-wave duration was significantly longer (26.8 +/- 2.1 vs. 16.7 +/- 1.1 ms, P = 0.001) as was total atrial activation time (RA: 13.6 +/- 4.4 vs. 3.2 +/- 0.5 ms; LA: 7.1 +/- 1.2 vs. 2.2 +/- 0.3 ms, P < 0.01). Prolonged local conduction times occurred more often in RacET (RA: 24.4 +/- 3.8 vs. 2.7 +/- 2.1%; LA: 19.1 +/- 6.3 vs. 1.2 +/- 0.7%, P < 0.01). The AERP and action potential duration did not differ significantly between both groups. RacET demonstrated significant atrial fibrosis but only moderate systolic heart failure. RacET and statin-treated RacET were not significantly different regarding atrial electrophysiology. The substrate for atrial arrhythmias in mice with Rac1 overexpression is characterized by conduction disturbances and atrial fibrosis. Electrical remodelling (i.e. a shortening of AERP) does not play a role. Statin treatment cannot prevent the structural and electrophysiological effects of pronounced Rac1 overexpression in this model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据