4.7 Article

Blockade of self-reactive IgM significantly reduces injury in a murine model of acute myocardial infarction

期刊

CARDIOVASCULAR RESEARCH
卷 87, 期 4, 页码 618-627

出版社

OXFORD UNIV PRESS
DOI: 10.1093/cvr/cvq141

关键词

Myocardial infarction; Peptides; Lymphocytes; Antibodies; Reperfusion

资金

  1. National Institutes of Health [GM52585, HL084821]
  2. DecImmune Therapeutics, Inc.

向作者/读者索取更多资源

Coronary artery occlusion resulting in ischaemia/reperfusion (I/R) injury is a major cause of mortality in the western world. Circulating natural IgM has been shown to play a significant role in reperfusion injury, leading to the notion of a pathogenic response against self by the innate immune system. A specific self-antigen (non-muscle myosin heavy chain II) was recently identified as the major target of pathogenic natural IgM. Therefore, we hypothesized that a synthetic peptide mimetope (N2) or monoclonal antibodies directed against the self-antigen would prevent specific IgM binding to the self-antigen and reduce reperfusion injury in the heart. We find that treatment with N2 peptide reduces infarct size by 47% and serum cardiac troponin-I levels by 69% following 1 h ischaemia and 24 h reperfusion. N2 peptide or an anti-N2 F(ab')(2) (21G6) is also effective at preventing IgM and complement deposition. Additionally, N2 peptide treatment significantly reduces monocyte and neutrophil infiltration at 24 h and collagen deposition at 5 days. Finally, we show that human IgM (hIgM) also includes specificity for the highly conserved self-antigen and that myocardial injury in antibody-deficient mice reconstituted with hIgM is blocked by treatment with N2 peptide or 21G6 F(ab')(2). The findings in this study identify potential therapeutics [i.e. N2 peptide or 21G6 F(ab')(2)] that prevent specific IgM binding to ischaemic antigens in the heart, resulting in a significant reduction in cardiac I/R injury.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据