4.7 Article

Insights into sick sinus syndrome from an inducible mouse model

期刊

CARDIOVASCULAR RESEARCH
卷 90, 期 1, 页码 38-48

出版社

OXFORD UNIV PRESS
DOI: 10.1093/cvr/cvq390

关键词

Sick sinus syndrome; Sino-atrial node; Arrhythmia; Transgenic animal; Site-specific recombination

资金

  1. EU [LSHM-CT-2006-018676]
  2. Deutsche Forschungsgemeinschaft [FA 413-3/1, SFB 656 A8]
  3. IZKF Munster Core unit CarTel

向作者/读者索取更多资源

Aims Sick sinus syndrome is a generalized abnormality of cardiac impulse formation and is responsible for a large proportion of pacemaker implantations. Although the exact aetiology is not known, it is widely accepted that age-dependent degenerative fibrosis of nodal tissue is the most common cause. Despite its importance, an animal model for sick sinus syndrome is lacking. We attempted to generate a mouse model phenocopying the pathohistological changes as well as the characteristic arrhythmic manifestations of this syndrome. Methods and results We crossed two genetically engineered mouse lines, ROSA-eGFP-DTA and HCN4-KiT-Cre, to achieve an inducible deletion of cells specifically in the cardiac pacemaking and conduction system. This deletion resulted in a degenerative fibrosis of nodal tissue, which accurately reflects the pathohistological findings in human sick sinus syndrome. The extent of the sino-atrial fibrosis could be controlled by varying the dosage of the inducing substance, tamoxifen. A high-dose protocol resulted in the complete ablation of all sino-atrial cells as demonstrated by histochemical analysis and quantitative reverse transcriptase-polymerase chain reaction. The animals developed a variety of arrhythmias, including progressive bradycardia, sinus pauses, supraventricular and ventricular tachycardia and chronotropic incompetence. Remarkably, the complete destruction of the primary pacemaker centre resulted in only a small increase in mortality. Conclusion This study describes the generation and analysis of an inducible mouse model which closely reflects the pathophysiological characteristics of sick sinus syndrome. The model, with the ability to control the extent of nodal cell ablation and fibrosis, offers new insights into sick sinus syndrome and other cardiac conduction diseases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据