4.7 Article

S1P3-mediated cardiac fibrosis in sphingosine kinase 1 transgenic mice involves reactive oxygen species

期刊

CARDIOVASCULAR RESEARCH
卷 85, 期 3, 页码 484-493

出版社

OXFORD UNIV PRESS
DOI: 10.1093/cvr/cvp312

关键词

Sphingosine kinase-1 transgenic mouse; Cardiac fibrosis; Ischemia/reperfusion injury; S1P(3); Reactive oxygen species

资金

  1. Ministry of Education, Sciences, Sports, and Culture of Japan
  2. NIH [DA019674, NS048478]
  3. Grants-in-Aid for Scientific Research [22590284, 21390057, 21591414] Funding Source: KAKEN

向作者/读者索取更多资源

Aims Sphingosine kinase 1 (SPHK1), its product sphingosine-1-phosphate (S1P), and S1P receptor subtypes have been suggested to play protective roles for cardiomyocytes in animal models of ischaemic preconditioning and cardiac ischaemia/reperfusion injury. To get more insight into roles for SPHK1 in vivo, we have generated SPHK1-transgenic (TG) mice and analysed the cardiac phenotype. Methods and results SPHK1-TG mice overexpressed SPHK1 in diverse tissues, with a nearly 20-fold increase in enzymatic activity. The TG mice grew normally with normal blood chemistry, cell counts, heart rate, and blood pressure. Unexpectedly, TG mice with high but not low expression levels of SPHK1 developed progressive myocardial degeneration and fibrosis, with upregulation of embryonic genes, elevated RhoA and Rac1 activity, stimulation of Smad3 phosphorylation, and increased levels of oxidative stress markers. Treatment of juvenile TG mice with pitavastatin, an established inhibitor of the Rho family G proteins, or deletion of S1P(3), a major myocardial S1P receptor subtype that couples to Rho GTPases and transactivates Smad signalling, both inhibited cardiac fibrosis with concomitant inhibition of SPHK1-dependent Smad-3 phosphorylation. In addition, the anti-oxidant N-2-mercaptopropyonylglycine, which reduces reactive oxygen species (ROS), also inhibited cardiac fibrosis. In in vivo ischaemia/reperfusion injury, the size of myocardial infarct was 30% decreased in SPHK1-TG mice compared with wild-type mice. Conclusion These results suggest that chronic activation of SPHK1-S1P signalling results in both pathological cardiac remodelling through ROS mediated by S1P(3) and favourable cardioprotective effects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据