4.7 Article

RAGE mediates oxidized LDL-induced pro-inflammatory effects and atherosclerosis in non-diabetic LDL receptor-deficient mice

期刊

CARDIOVASCULAR RESEARCH
卷 82, 期 2, 页码 371-381

出版社

OXFORD UNIV PRESS
DOI: 10.1093/cvr/cvp036

关键词

Atherosclerosis; Adhesion molecule; Oxidized LDL; Oxidative stress; RAGE

资金

  1. Ministry of Education, Culture, Sports, Science and Technology of Japan
  2. Japan Foundation of Cardiovascular Research

向作者/读者索取更多资源

Receptor for advanced glycation end products (RAGE) plays a pivotal role in the genesis of diabetic vascular diseases. To further explore the mechanisms underlying atherosclerosis under non-diabetic conditions, we examined the effect of RAGE deficiency on atherosclerosis in hyperlipidaemic mice. RAGE-/- mice were crossed with low-density lipoprotein receptor-deficient (LDLr-/-) mice to generate the double knockout (DKO) mice. After feeding with high-fat diet for 12 weeks, aortic atherosclerotic lesions were analysed histologically in these mice. Although there were no differences in serum levels of glucose and known RAGE ligands between DKO and LDLr-/- mice, DKO mice exhibited a significant decrease in the size and macrophage content in atherosclerotic lesions compared with LDLr-/- mice. Expression of intracellular adhesion molecule-1 and vascular cell adhesion molecule-1 in the aorta was lower in DKO mice than in LDLr-/- mice. Fluorescence-based assays revealed that oxidative stress in the vessel wall was attenuated in DKO mice than in LDLr-/- mice. Cell culture experiments revealed that RAGE mediated oxidative LDL-induced activation of p42/44 mitogen-activated protein kinases and oxidative stress in macrophages. Oxidative LDL may be a ligand of RAGE in the hyperlipidaemic state. RAGE inactivation inhibits the atherosclerosis through reducing oxLDL-induced pro-inflammatory responses and oxidative stress in hyperlipidaemia.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据