4.2 Review

SCL: From the origin of hematopoiesis to stem cells and leukemia

期刊

EXPERIMENTAL HEMATOLOGY
卷 32, 期 1, 页码 11-24

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.exphem.2003.10.010

关键词

-

向作者/读者索取更多资源

In the hematopoietic system, lineage commitment and differentiation is controlled by the combinatorial action of transcription factors from diverse families. SCL is a basic helix-loop-helix transcription factor that is an essential regulator at several levels in the hematopoietic hierarchy and whose inappropriate regulation frequently contributes to the development of pediatric T-cell acute lymphoblastic leukemia. This review discusses advances that have shed important light on the functions played by SCL during normal hematopoiesis and leukemogenesis and have revealed an unexpected robustness of hematopoietic stem cell function. Molecular studies have unraveled a mechanism through which gene expression is tightly controlled, as SCL functions within multifactorial complexes that exhibit an all-or-none switch-like behavior in transcription activation, arguing for a quantal process that depends on the concurrent occupation of target loci by all members of the complex. Finally, variations in composition of SCL-containing complexes may ensure flexibility and specificity in the regulation of lineage-specific programs of gene expression, thus providing the molecular basis through which SCL exerts its essential functions at several branch points of the hematopoietic hierarchy. (C) 2004 International Society for Experimental Hematology. Published by Elsevier Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据