4.2 Article

Location accuracy of long distance VLF lightning location network

期刊

ANNALES GEOPHYSICAE
卷 22, 期 3, 页码 747-758

出版社

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/angeo-22-747-2004

关键词

meteorology and atmospheric dynamics; lightning; atmospheric electricity; instruments and techniques

向作者/读者索取更多资源

An experimental VLF WorldWide Lightning Location (WWLL) network is being developed to provide realtime locations of cloud to ground lightning discharges occurring throughout the globe. This network has expanded from a limited number of stations in the Western Pacific to its current state of 11 stations, in most longitude sectors, with additional stations planned in the near future. As part of the initial testing phase of the WWLL the network has operated in a simple mode, sending the station trigger times into a central processing point rather than using the sferic Time of Group Arrival (TOGA). During this initial stage, a significant quantity of lightning location data has been collected, some of which is being applied to research questions. In this paper the operation of the WWLL network is described, and the location accuracy of the pre-TOGA WWLL network is characterised. This is performed by contrasting commercial lightning location data from an Australian network, Kattron, over 2 days in January 2002, with 4 WWLL stations covering the same region. It was found that there were 426 matched lightning events, corresponding to lightning discharges with large lightning return stroke peak currents (mean absolute peak current of similar to26 kA compared with similar to12 kA for all Kattron events). By considering the random errors in the difference locations between the matching lightning events, an appropriate Gaussian timing error for the WWLL network of receiving stations is determined, and hence an estimate for the global location errors for the existing 11-station network is found. The worst-case global location error for the existing network ranges spatially from 7.5-100 km, with the global median being 15 km, and the global mean 30 km. When the TOGA method is implemented, the station timing errors will decrease, allowing for an increase in the location accuracies. Hence, the location accuracy estimates determined in this paper will be very conservative for the future WWLL network employing the TOGA technique.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据