4.7 Article

Discrimination mode processing for EMI and GPR sensors for hand-held land mine detection

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TGRS.2003.817804

关键词

electromagnetic induction (EMI); ground-penetrating radar (GPR); hand-held mine detector; land mine

向作者/读者索取更多资源

Signal processing algorithms for hand-held mine detection sensors are described. The goals of the algorithms are to provide alarms to a human operator indicating the likelihood of the presence of a buried mine. Two modes of operations are considered: search mode and discrimination mode. Search mode generates an initial detection at a suspected. location and discrimination mode confirms that the suspected location contains a land mine. Search mode requires that the signal. processing algorithm generate a detection confidence value immediately at the current sample location and no delay in producing an alarm confidence is tolerable. Search mode detection has a high false-alarm rate. Discrimination mode allows the operator to interrogate the entire suspected location to eliminate false alarms. It does riot require that the signal processing algorithm produce an alarm confidence immediately for the current sample location, but rather allows the system to process all the data acquired over the region before producing an alarm. This paper proposes discrimination mode processing algorithms for metal detectors (MDs), or electromagnetic induction sensors (EMIs), ground-penetrating radars (GPRs), and their fusion. The MD discrimination mode algorithm employs a model-based approach and uses the target model parameters to discriminate between mines and clutter objects. The GPR discrimination mode algorithm uses the consistency of detection as well as the shape of the detection peaks over several sweeps to improve the discrimination accuracy. The performances of the proposed algorithms were examined on a dataset collected at a government test site, and performance was compared with baseline techniques. Experimental results showed that the proposed method can reduce the probability of false alarm by as much as 70% at a 100% correct detection rate and performed comparable to the best human operator on a blind test with data collected at approximately 1000 locations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据