4.8 Article

The FUS3 transcription factor functions through the epidermal regulator TTG1 during embryogenesis in Arabidopsis

期刊

PLANT JOURNAL
卷 37, 期 1, 页码 73-81

出版社

WILEY
DOI: 10.1046/j.1365-313X.2003.01939.x

关键词

plant development; late embryogenesis; leafy cotyledons

向作者/读者索取更多资源

Loss-of-function mutations in the FUSCA3 (FUS3) gene of Arabidopsis result in alterations in cotyledon identity, inability to complete late seed maturation processes, and the premature activation of apical and root embryonic meristems, which indicates that this transcription factor is an essential regulator of embryogenesis. Although FUS3 shows a complex pattern of expression in the embryo, this gene is only required in the protoderm to carry out its functions. Moreover, the epidermal morphogenesis regulator TRANSPARENT TESTA GLABRA1 (TTG1) is negatively regulated by FUS3 in the embryo. When a loss-of-function ttg1 mutation is introduced into a fus3 mutant, a number of fus3-related phenotypes are rescued, indicating a functional TTG1 gene is required to manifest the fus3 mutant phenotype. It therefore appears that one of the functions of FUS3 is to restrict the domain of expression of TTG1 during embryogenesis. The FUS3-TTG1 interaction is both maternal and zygotic, suggesting a complex relationship is required between these gene products to allow correct seed development.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据