4.7 Article

Impaired relaxation despite upregulated calcium-handling protein atrial myocardium from type 2 diabetic patients with preserved ejection fraction

期刊

CARDIOVASCULAR DIABETOLOGY
卷 13, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/1475-2840-13-72

关键词

Diastolic dysfunction; Human myocardium; Type 2 diabetes; Relaxation; Contraction; Adrenergic regulation; Calcium signaling; Myocardial fibrosis

资金

  1. National Heart Foundation Taylor Charitable Trust [1491]
  2. Otago Medical Research Foundation's Laurenson Award [LA 306]
  3. Healthcare Otago Charitable Trust [09335]
  4. Tony Hocken Scholarship from the Department of Medicine - University of Otago

向作者/读者索取更多资源

Background: Diastolic dysfunction is a key factor in the development and pathology of cardiac dysfunction in diabetes, however the exact underlying mechanism remains unknown, especially in humans. We aimed to measure contraction, relaxation, expression of calcium-handling proteins and fibrosis in myocardium of diabetic patients with preserved systolic function. Methods: Right atrial appendages from patients with type 2 diabetes mellitus (DM, n = 20) and non-diabetic patients (non-DM, n = 36), all with preserved ejection fraction and undergoing coronary artery bypass grafting (CABG), were collected. From appendages, small cardiac muscles, trabeculae, were isolated to measure basal and beta-adrenergic stimulated myocardial function. Expression levels of calcium-handling proteins, sarcoplasmic reticulum Ca2+ ATPase (SERCA2a) and phospholamban (PLB), and of beta(1)-adrenoreceptors were determined in tissue samples by Western blot. Collagen deposition was determined by picro-sirius red staining. Results: In trabeculae from diabetic samples, contractile function was preserved, but relaxation was prolonged (Tau: 74 +/- 13 ms vs. 93 +/- 16 ms, non-DM vs. DM, p = 0.03). The expression of SERCA2a was increased in diabetic myocardial tissue (0.75 +/- 0.09 vs. 1.23 +/- 0.15, non-DM vs. DM, p = 0.007), whereas its endogenous inhibitor PLB was reduced (2.21 +/- 0.45 vs. 0.42 +/- 0.11, non-DM vs. DM, p = 0.01). Collagen deposition was increased in diabetic samples. Moreover, trabeculae from diabetic patients were unresponsive to beta-adrenergic stimulation, despite no change in beta(1)-adrenoreceptor expression levels. Conclusions: Human type 2 diabetic atrial myocardium showed increased fibrosis without systolic dysfunction but with impaired relaxation, especially during beta-adrenergic challenge. Interestingly, changes in calcium-handling protein expression suggests accelerated active calcium re-uptake, thus improved relaxation, indicating a compensatory calcium-handling mechanism in diabetes in an attempt to maintain diastolic function at rest despite impaired relaxation in the diabetic fibrotic atrial myocardium. Our study addresses important aspects of the underlying mechanisms of diabetes-associated diastolic dysfunction, which is crucial to developing new therapeutic treatments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据