4.6 Article

Chemical removal of organic polymers from highly porous sol-gel-derived silica monoliths

期刊

NEW JOURNAL OF CHEMISTRY
卷 28, 期 12, 页码 1520-1525

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b407639g

关键词

-

向作者/读者索取更多资源

A new method for the removal of the organic polymer poly(ethylene glycol) (PEG) from silica monoliths exhibiting a hierarchical, bimodal porosity is described. The method is based on post-synthesis treatment with sulfuric acid and does not necessarily require calcination of the monoliths. This procedure preserves the mechanical integrity of the highly porous monoliths. Furthermore, it can be applied to remove PEG from one-pot-synthesized monoliths bearing organic functional groups that would not withstand high-temperature treatments but could survive in acidic conditions. The sulfuric acid treatment also results in less shrinkage than does calcination, which is related to an increase in the degree of silica condensation during the treatment. This could allow the removal of organic polymers to be carried out in the final monolith carrier, and hence reduce the number of steps needed for the fabrication of silica monoliths as HPLC columns, catalyst supports, etc. Furthermore, silica monoliths treated with sulfuric acid have larger amounts of surface silanol groups than calcined monoliths. They also show a higher degree of surface functionalization with functional silanes than calcined samples under the same reaction conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据