4.4 Article

Atmospheric nitrate deposition, microbial community composition, and enzyme activity in northern hardwood forests

期刊

SOIL SCIENCE SOCIETY OF AMERICA JOURNAL
卷 68, 期 1, 页码 132-138

出版社

SOIL SCI SOC AMER
DOI: 10.2136/sssaj2004.1320

关键词

-

向作者/读者索取更多资源

On a global scale, human activity has increased the atmospheric input of NO3- to many terrestrial ecosystems. Anthropogenic NO3- may be a potent modifier of ecosystem function, especially in temperate forests that are sometimes N limited. However, the impact of chronic N deposition on soil microorganisms is still poorly understood. Nitrate entering Lake States forests is rapidly assimilated by the microbial community and it is subsequently released as NH4+. Because high levels of NH4+ inhibit the activity of lignin-degrading soil fungi, we reasoned that chronic N additions could alter the composition and function of heterotrophic microbial communities in soil, and hence the ecosystem-level processes they mediate. We tested our hypothesis in four northern hardwood ecosystems in northern Michigan, which received experimental N additions (30 kg NO3--N ha(-1) yr(-1)) during the past 8 yr. We quantified microbial community function by measuring the activity of extracellular enzymes involved in plant litter degradation and described microbial community composition using phospholipid fatty acid (PLFA) analysis. Chronic N additions significantly suppressed beta-glucosidase activity by 24% in mineral soil and suppressed phenol oxidase activity by 35% in surface litter. We found no evidence that chronic N additions altered microbial community composition; NO3- addition did not alter the relative abundance of bacterial, actinomycetal, fungal, or protozoan PLFAs. However, NO3- additions significantly reduced microbial biomass by 18% relative to the control treatment. Results indicate that N additions broadly suppressed all microbial groups, not just the activity and abundance of lignin-degrading fungi.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据