4.5 Article

Delineation and evaluation of hydrologic-landscape regions in the United States using geographic information system tools and multivariate statistical analyses

期刊

ENVIRONMENTAL MANAGEMENT
卷 34, 期 -, 页码 S71-S88

出版社

SPRINGER
DOI: 10.1007/s00267-003-5077-9

关键词

hydrologic landscapes; hydrologic regions; cluster analysis; network design

向作者/读者索取更多资源

Hydrologic-landscape regions in the United States were delineated by using geographic information system (GIS) tools combined with principal components and cluster analyses. The GIS and statistical analyses were applied to land-surface form, geologic texture (permeability of the soil and bedrock), and climate variables that describe the physical and climatic setting of 43,931 small (approximately 200 km(2)) watersheds in the United States. (The term watersheds is defined in this paper as the drainage areas of tributary streams, headwater streams, and stream segments lying between two confluences.) The analyses grouped the watersheds into 20 noncontiguous regions based on similarities in land-surface form, geologic texture, and climate characteristics. The percentage of explained variance (R-squared value) in an analysis of variance was used to compare the hydrologic-landscape regions to 19 square geometric regions and the 21 U.S. Environmental Protection Agency level-II ecoregions. Hydrologic-landscape regions generally were better than ecoregions at delineating regions of distinct land-surface form and geologic texture. Hydrologic-landscape regions and ecoregions were equally effective at defining regions in terms of climate, land cover, and water-quality characteristics. For about half of the landscape, climate, and water-quality characteristics, the R-squared values of square geometric regions were as high as hydrologic-landscape regions or ecoregions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据