4.4 Review

Human metabolism and metabolic interactions of deployment-related chemicals

期刊

DRUG METABOLISM REVIEWS
卷 37, 期 1, 页码 1-39

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1081/DMR-200046955

关键词

alcohol dehydrogenase; aldehyde dehydrogenase; carbamates; chemical warfare agents; cytochrome P450; deployment-related chemicals; jet fuel components; metabolic interactions; metabolism; organophosphorus compounds; pyrethroids; repellents; xenobiotic-metabolizing enzymes

向作者/读者索取更多资源

It has been suggested that chemicals and, more specifically, chemical interactions, are involved as causative agents in deployment-related illnesses. Unfortunately, this hypothesis has proven difficult to test, because toxicological investigations of deployment-related chemicals are usually carried out on surrogate animals and are difficult to extrapolate to humans. Other parts of the problem, such as the definition of variation within human populations and the development of methods for designating groups or individuals at significantly greater risk, cannot be carried out on surrogate animals, and the data must be derived from humans. The relatively recent availability of human cell fractions, such as microsomes, cytosol, etc., human cells such as primary hepatocytes, recombinant human enzymes, and their isoforms and polymorphic variants has enabled a significant start to be made in developing the human data needed. These initial studies have examined the human metabolism by cytochrome P450, other phase I enzymes, and their isoforms and, in some cases, their polymorphic variants of compounds such as chlorpyrifos, carbaryl, DEET, permethrin, and pyridostigmine bromide, and, to a lesser extent, other chemicals from the same chemical and use classes, including solvents, jet fuel components, and sulfur mustard metabolites. A number of interactions at the metabolic level have been described both with respect to other xenobiotics and to endogenous metabolites. Probably the most dramatic have been seen in the ability of chlorpyrifos to inhibit not only the metabolism of other xenobiotics such as carbaryl and DEET but also to inhibit the metabolism of steroid hormones.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据