4.0 Article

Surface motion upregulates superficial zone protein and hyaluronan production in chondrocyte-seeded three-dimensional scaffolds

期刊

TISSUE ENGINEERING
卷 11, 期 1-2, 页码 249-256

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/ten.2005.11.249

关键词

-

向作者/读者索取更多资源

A cartilage engineering bioreactor has been developed that provides joint-specific kinematics. This study investigated the effect of articular motion on the gene expression of superficial zone protein (SZP) and hyaluronan synthases (HASs) and on the release of SZP and hyaluronan of chondrocytes seeded onto biodegradable scaffolds. Cylindrical ( 8 x 4 mm) porous polyurethane scaffolds were seeded with bovine articular chondrocytes and subjected to static or dynamic compression, with and without articulation against a ceramic hip ball. After loading, the mRNA expression of SZP and HASs was analyzed, and SZP immunoreactivity and hyaluronan concentration of conditioned media were determined. Surface motion significantly upregulated the mRNA expression of SZP and HASs. Axial compression alone had no effect on SZP and increased HAS mRNA only at high strain amplitude. SZP was immunodetected only in the media of constructs exposed to surface motion. The release of hyaluronan into the culture medium was significantly enhanced by surface motion. These results indicate that specific stimuli that mimic the kinematics of natural joints, such as articular motion, may promote the development of a functional articular surface - synovial interface.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据