4.4 Article

A parametric study on protein-membrane-ionic environment interactions for membrane fouling

期刊

SEPARATION SCIENCE AND TECHNOLOGY
卷 40, 期 6, 页码 1191-1212

出版社

TAYLOR & FRANCIS INC
DOI: 10.1081/SS-200052202

关键词

ultrafiltration membranes; protein; BSA; adsorption; membrane fouling; protein-membrane interactions; interaction energy; DLVO theory

向作者/读者索取更多资源

This work reports on protein-membrane-ionic environment interactions on the basis of chemical and electrochemical features of ultrafiltration membranes and the protein in the solution that affects the extent of protein adsorption onto the membrane, which is a measure of membrane-fouling. Bovine serum albumin (BSA) was chosen as the model protein; and 10 kDa of hydrophobic polyethersulfone (PES) and hydrophilic cellulose triacetate (CTA) ultrafiltration membranes at the solution pH values of 3.78, 4.78, and 6.80, and ionic-strengths of 0.01 M and 0.1 M were employed. Isotherms for BSA adsorption on both types of membranes were correlated by the Freundlich equation. More BSA was adsorbed on hydrophobic PES membranes than was adsorbed on hydrophilic CTA membranes. The highest degree of adsorption on PES membranes was obtained at pH 3.78 whereas the minimum adsorption occurred at the isoelectric point (IEP) (pH 4.78) of BSA. With increasing ionic strength, the adsorbed protein on both membranes decreased. The zeta-potentials of the membranes and protein were determined by streaming potential measurements and theoretical calculations, respectively; and the electrostatic interactions and van der Waals energies between the membranes and the protein were calculated using the Deryagin-Landau/Verivey-Overbeek (DVLO) theory. To detect the structural changes that occurred, membrane surfaces were analyzed by Fourier transform infrared-attenuated total reflectance (FTIR-ATR) measurements, and scanning electron microscopy (SEM) and atomic force microscope (AFM) images.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据