4.4 Article

Real-space protein-model completion: an inverse-kinematics approach

出版社

INT UNION CRYSTALLOGRAPHY
DOI: 10.1107/S0907444904025697

关键词

-

资金

  1. NIGMS NIH HHS [P50 GM62411] Funding Source: Medline
  2. NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES [P50GM062411] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Rapid protein-structure determination relies greatly on software that can automatically build a protein model into an experimental electron-density map. In favorable circumstances, various software systems are capable of building over 90% of the final model. However, completeness falls off rapidly with the resolution of the diffraction data. Manual completion of these partial models is usually feasible, but is time-consuming and prone to subjective interpretation. Except for the N- and C-termini of the chain, the end points of each missing fragment are known from the initial model. Hence, fitting fragments reduces to an inverse-kinematics problem. A method has been developed that combines fast inverse-kinematics algorithms with a real-space torsion-angle refinement procedure in a two-stage approach to fit missing main-chain fragments into the electron density between two anchor points. The first stage samples a large number of closing conformations, guided by the electron density. These candidates are ranked according to density fit. In a subsequent refinement stage, optimization steps are projected onto a carefully chosen subspace of conformation space to preserve rigid geometry and closure. Experimental results show that fitted fragments are in excellent agreement with the final refined structure for lengths of up to 12 - 15 residues in areas of weak or ambiguous electron density, even at medium to low resolution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据