4.7 Article

Continuous flow in open microfluidics using controlled evaporation

向作者/读者索取更多资源

This paper presents a method for programming the flow rate of liquids inside open microfluidic networks (MFNs). A MFN comprises a number of independent flow paths, each of which starts with an open filling port, has a sealed microchannel in which assays can be performed, and an open capillary pump (CP). The MFN is placed over Peltier elements and its flow paths initially fill owing to capillary forces when liquids are added to the filling ports. A cooling Peltier element underneath the filling ports dynamically prevents evaporation in all filling ports using the ambient temperature and relative humidity as inputs. Another Peltier element underneath the CPs heats the pumps thereby inducing evaporation in the CPs and setting the flow rate in the microchannels. This method achieves flow rates in the microchannels ranging from similar to 1.2 nL s(-1) to similar to 30 pL s(-1), and is able to keep 90% of a 0.6 mu L solution placed in an open filling port for 60 min. This simple and efficient method should be applicable to numerous assays or chemical reactions that require small and precise flow of liquids and reagents inside microfluidics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据