4.3 Article

Plant response to copper toxicity as affected by plant species and soil type

期刊

JOURNAL OF PLANT NUTRITION
卷 28, 期 3, 页码 379-392

出版社

TAYLOR & FRANCIS INC
DOI: 10.1081/PLN-200049147

关键词

accumulation; bioavailability; clay loam soil; copper; lettuce; sandy clay loam soil; spinach; toxicity; transfer; uptake

向作者/读者索取更多资源

A greenhouse experiment was conducted to determine the bioavailability of copper (Cu) in clay loam and sandy clay loam soil. Lettuce (Lactuca sativa) and spinach (Spinacia oleracea) were grown in pots for 45 d. When mature, plants were treated for 15 additional days with 0, 100, 250, 500, or 1000 mg Cu kg(-1) as CuSO(4)(.)5H(2)O. After harvest, Cu in soils and plant tissues was determined. In soils, applied Cu raised total and EDTA-extractible Cu. Results also revealed that the amounts of Cu extracted from sandy clay loam soil (80%) were higher than those extracted from clay loam soil (70%). In plants, increasing soil Cu concentration increased plant concentration of the metal. Plant species vary in their capacity for Cu accumulation: Lettuce has a relatively higher potential for Cu uptake and translocation than does spinach. Cu accumulation also differs among plant organs. In lettuce, metal accumulation is higher in roots than in shoots, where 60% to 80% of the total Cu of the plant is located in the roots. However, in spinach, there is no significant difference in Cu content between roots and shoots. The transfer of the metal from soil to plant is higher for plants grown on sandy clay loam soil. For a given rate of applied Cu, metal content in plant tissues is higher on sandy clay loam soil due to its higher transfer coefficient (C-T) from soil to plant. Nevertheless, all crops studied showed a positive linear relationship between extractible soil Cu and plant Cu.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据