4.6 Article

Computational fluid dynamics simulations of Taylor bubbles in tubular membranes - Model validation and application to Laminar flow systems

期刊

CHEMICAL ENGINEERING RESEARCH & DESIGN
卷 83, 期 A1, 页码 40-49

出版社

INST CHEMICAL ENGINEERS
DOI: 10.1205/cherd.03394

关键词

Taylor bubble; CFD; model validation; tubular membrane; wall extraction

向作者/读者索取更多资源

The use of gas-liquid two-phase flow has been shown to significantly enhance the performance of some membrane processes by reducing concentration polarization and fouling. However, the understanding of the mechanisms behind gas-liquid two-phase flow enhancement of flux is still limited. This paper reports on the validation of computational fluid dynamics simulations of a Taylor bubble, using a variety of numerical approaches. Good agreement between the experimental and numerical data is shown for an Eulerian two-fluid model that uses a solution adaptive bubble size to avoid numerical mixing. This model is then used to study the effect of liquid extraction at the membrane wall on the wall shear stress, since it is the enhanced wall shear stress caused by the bubble passage that is important. This effect is shown to be negligible for typical operating conditions in membrane systems. Moreover, we show that the wall shear stress can be well represented by a 'top hat' profile for the system considered here.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据