4.7 Review

Histone deacetylase inhibitors

期刊

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.ejmech.2004.10.001

关键词

histone deacetylases; enzymes; antitumor; gene expression; p21(WAF1,CIP1); apoptosis

向作者/读者索取更多资源

Histones are small basic proteins that, by complexing with DNA, form the nucleosome core. Repetitive units of this nucleosome led to the chromatin in which all the human genome is packaged. Histones can be in one of the two antagonist forms, acetylated or deacetylated, equilibrium regulated by the corresponding enzymes, histone acetylases and histones deacetylases (HDACs). Inhibition of HDACs represents a new strategy in human cancer therapy since these enzymes play a fundamental role in regulating gene expression and chromatin assembly. They are potent inducers of growth arrest, differentiation and apoptosis of tumor cells. A wide variety of HDACs of both natural and synthetic origin has been reported. Except depsispeptide FK228, natural HDACs (trichostatin (TSA), depudecin, trapoxins, apicidins) as well as sodium butyrate, phenylbutyrate and suberoyl anilide hydroxamic acid (SAHA), while effective in vivo, are inefficient due to instability and low retention. Subsequently, synthetic analogs isolated from screening libraries (oxamflatin, scriptaid) were discovered as havind a common structure with TSA and SAHA: an hydroxamic acid zinc-binding group linked via a spacer (5 or 6 CH2) to a hydrophobic group. Design of a second generation of HDACs was based upon these data affording potent HDACs such as LAQ824 and PDX101 currently under phase I clinical trials. Simultaneously, synthetic benzamide-containing HDACs were reported and two of them, MS-275 and CI-994, have reached phase 11 and I clinical trials, respectively. (C) 2004 Elsevier SAS. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据