4.6 Article

Multi-junction III-V solar cells: current status and future potential

期刊

SOLAR ENERGY
卷 79, 期 1, 页码 78-85

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.solener.2004.09.018

关键词

solar cell; high efficiency; multi-junction; concentrator

向作者/读者索取更多资源

Our recent R&D activities of III-V compound multi-junction (MJ) solar cells are presented. Conversion efficiency of InGaP/InGaAs/Ge has been improved up to 31-32% (AM 1.5) as a result of technologies development such as double hetero-wide band-gap tunnel junction, InGaP-Ge hetero-face structure bottom cell, and precise lattice-matching of InGaAs middle cell to Ge substrate by adding indium into the conventional GaAs layer. For concentrator applications, grid structure has been designed in order to reduce the energy loss due to series resistance, and world-record efficiency InGaP/InGaAs/Ge 3-junction concentrator solar cell with an efficiency of 37.4% (AM1.5G, 200-suns) has been fabricated. In addition, we have also demonstrated high-efficiency and large-area (7000 cm(2)) concentrator InGaP/InGaAs/Ge 3-junction solar cell modules of an outdoor efficiency of 27% as a result of developing high-efficiency InGaP/InGaAs/Ge 3-junction cells, low optical loss Fresnel lens and homogenizers, and designing high thermal conductivity modules. Future prospects are also presented. We have proposed concentrator III-V compound MJ solar cells as the 3rd generation solar cells in addition to 1st generation crystalline Si solar cells and 2nd generation thin-film solar cells. We are now developing low-cost and high output power concentrator MJ solar cell modules with an output power of 400 W/m(2) for terrestrial applications. (c) 2004 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据