4.8 Article

'Green' composites using cross-linked soy flour and flax yarns

期刊

GREEN CHEMISTRY
卷 7, 期 8, 页码 576-581

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b410817e

关键词

-

向作者/读者索取更多资源

Environment-friendly, fully biodegradable, 'green' composites based on plant based fibers and resins are increasingly being developed for various applications as replacements for non-degradable materials derived from petroleum that are currently being used. Unlike petroleum, plant based proteins, starches and fibers are yearly renewable. In addition, these green composites may be easily composted after their life, completing nature's carbon cycle. In this study, soy flour (SF) was modified by cross-linking it with glutaraldehyde (GA). The cross-linked soy flour (CSF) polymer was characterized for its tensile and thermal properties. The effect of glycerol on the mechanical properties of the soy flour was characterized and optimized. CSF polymer showed improved tensile properties and thermal stability, compared to unmodified SF resin, for use as a resin to fabricate composites. Unidirectional green composites using flax yarn and CSF resin were fabricated and characterized for their tensile and flexural properties. The composite specimens exhibited fracture stress and Young's modulus of 259.5 MPa and 3.71 GPa, respectively, and flexural strength of 174 MPa, in the longitudinal direction. These properties seem to be sufficient for considering these green composites for indoor structural applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据