4.5 Article

Replicative senescence in sheep fibroblasts is a p53 dependent process

期刊

EXPERIMENTAL GERONTOLOGY
卷 40, 期 1-2, 页码 17-26

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.exger.2004.09.004

关键词

ageing; animal models; cellular immortalisation; p21(WAFI); proliferative lifespan barriers; telomerase

向作者/读者索取更多资源

Studies on telomere and telomerase biology are fundamental to the understanding of human ageing, and age-related diseases such as cancer. However, human studies are hampered by the lack of fully reflective animal model systems. Here we describe,basic studies of telomere length and telomerase activity in sheep tissues and cells. Terminal restriction fragment lengths from sheep tissues ranged from 9 to 23 kb, with telomerase activity present in testis but suppressed in somatic tissues. Sheep fibroblasts had a finite lifespan in culture, after which the cells entered senescence. During in vitro growth the mean terminal restriction fragment lengths decreased in size at a rate of 210 and 350 bp per population doubling (PD). Senescent skin fibroblasts had increased levels of p53 and p21(WAF1) Compared to young cells. Incubation of senescent cells with siRNA duplexes specific for p53 suppressed p53 expression and allowed the cells to re-enter the cell cycle. Five PDs beyond senescence the siRNA-treated cells reached a second proliferative barrier. This study shows that telomere biology in sheep is similar to that in humans, with senescence in sheep GM03550 fibroblasts being a telomere-driven, p53-(p21(WAF1))-dependent process. Therefore sheep may represent an alternative model system for studying telomere biology, replicative senescence, and by implication human ageing. (C) 2004 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据