4.6 Article

FAT1 somatic mutations in head and neck carcinoma are associated with tumor progression and survival

期刊

CARCINOGENESIS
卷 39, 期 11, 页码 1320-1330

出版社

OXFORD UNIV PRESS
DOI: 10.1093/carcin/bgy107

关键词

-

类别

资金

  1. MacKay Memorial Hospital [MMH-E-105-12]
  2. Ministry of Science and Technology, Taiwan [MOST 102-2314-B-195-007-MY3, MOST 105-2314-B-195-005-MY3]

向作者/读者索取更多资源

In recent years, the incidence and mortality rates of head and neck squamous cell carcinoma (HNSCC) have increased worldwide. Therefore, understanding genomic alterations in HNSCC carcinogenesis is crucial for appropriate diagnosis and therapy. Protocadherin FAT1, which encodes 4588 amino acid residues, regulates complex mechanisms to promote oncogenesis or suppression of malignancies. Multiplex PCR-based next-generation sequencing (NGS) revealed FAT1 somatic mutations. The clinicopathologic implications of FAT1 in HNSCC were investigated using expression assays, and the functional role of FAT1 in HNSCC pathogenesis was determined using ectopic expression and knockdown experiments. Approximately 29% patients with HNSCC harbored damaging FAT1 mutations. InVEx algorithm identified FAT1 as a significant functional mutation burden. Each type of mutation (missense, nonsense and frameshift) accounted for nearly one-third of deleterious mutations. FAT1 mutations correlated with lower FAT1 expression in tumors. The knockdown of the endogenous expression of FAT1 and exogenous expression of crucial FAT1 domains unequivocally indicated that FAT1 suppressed the migration and invasion capability of HNSCC cells. Functional analysis suggested that nonsense mutations in FAT1 result in the loss of the suppression of tumor progression. FAT1 mutations and downregulation defined nodal involvement, lymphovascular permeation and tumor recurrence. In addition, FAT1 mutations and downregulation are independent predictors of poor disease-free survival in patients with HNSCC. This study is the first to perform multiplex PCR-based NGS to indicate marked non-synonymous FAT1 mutations in HNSCC, which are prognostic indicators. The gene analysis strategy proposed for detecting FAT1 mutations may be a valid method for mutation screening.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据