4.2 Article

Effects and Mechanism of Action of Inducible Nitric Oxide Synthase on Apoptosis in a Rat Model of Cerebral Ischemia-Reperfusion Injury

出版社

WILEY
DOI: 10.1002/ar.23295

关键词

cerebral ischemia and reperfusion injury; inducible nitric oxide synthase; apoptosis; p-AKT

资金

  1. National Natural Science Foundation of China [31271280]
  2. Lang Fang Technique Supporting Foundation [2011013057]

向作者/读者索取更多资源

Inducible nitric oxide synthase (iNOS) is a key enzyme in regulating nitric oxide (NO) synthesis under stress, and NO has varying ability to regulate apoptosis. The aim of this study was to investigate the effects and possible mechanism of action of iNOS on neuronal apoptosis in a rat model of cerebral focal ischemia and reperfusion injury in rats treated with S-methylisothiourea sulfate (SMT), a high-selective inhibitor of iNOS. Seventy-two male Sprague-Dawley (SD) rats were randomly divided into three groups: the sham, middle cerebral artery occlusion (MCAO) + vehicle, and MCAO+SMT groups. Neurobehavioral deficits, infarct zone size, and cortical neuron morphology were evaluated through the modified Garcia scores, 2,3,5-triphenyltetrazolium chloride (TTC), and Nissl staining, respectively. Brain tissues and serum samples were collected at 72 hr post-reperfusion for immunohistochemical analysis, Western blotting, Terminal deoxynucleotidyl transferase- mediated dUTP-biotin Nick End Labeling assay (TUNEL) staining, and enzyme assays. The study found that inhibition of iNOS significantly attenuated the severity of the pathological changes observed as a result of ischemia-reperfusion injury: SMT reduced NO content as well as total nitric oxide synthase (tNOS) and iNOS activities in both ischemic cerebral hemisphere and serum, improved neurobehavioral scores, reduced mortality, reduced the infarct volume ratio, attenuated morphological changes in cortical neurons, decreased the rate of apoptosis (TUNEL and caspase-3-positive), and increased phospho (p)-AKT expression in ischemic penumbra. These results suggested that inhibition of iNOS might reduce the severity of ischemia-reperfusion injury by inhibiting neuronal apoptosis via maintaining p-AKT activity. (C) 2015 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据