4.6 Article

SH3RF2 functions as an oncogene by mediating PAK4 protein stability

期刊

CARCINOGENESIS
卷 35, 期 3, 页码 624-634

出版社

OXFORD UNIV PRESS
DOI: 10.1093/carcin/bgt338

关键词

-

类别

资金

  1. National Research Foundation (NRF)
  2. Ministry of Education & Science Technology of Korea (MEST) [NRF-2010-0010465, 2010-0030020, 2011-0028171]
  3. National R&D Program for Cancer Control from the Ministry of Health & Welfare of Korea (MHW) [0720050]
  4. KRIBB Research Initiative Program
  5. National Research Foundation of Korea [2010-0030020, 2011-0028171] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

SH3RF (SH3-domain-containing RING finger protein) family members, SH3RF1-3, are multidomain scaffold proteins involved in promoting cell survival and apoptosis. In this report, we show that SH3RF2 is an oncogene product that is overexpressed in human cancers and regulates p21-activated kinase 4 (PAK4) protein stability. Immunohistochemical analysis of 159 colon cancer tissues showed that SH3RF2 expression levels are frequently elevated in cancer tissues and significantly correlate with poor prognostic indicators, including increased invasion, early recurrence and poor survival rates. We also demonstrated that PAK4 protein is degraded by the ubiquitin-proteasome system and that SH3RF2 inhibits PAK4 ubiquitination via physical interaction-mediated steric hindrance, which results in the upregulation of PAK4 protein. Moreover, ablation of SH3RF2 expression attenuates TRADD (TNFR-associated death domain) recruitment to tumor necrosis factor-alpha (TNF-alpha) receptor 1 and hinders down-stream signals, thereby inhibiting NF-kappa B (nuclear factor-kappaB) activity and enhancing caspase-8 activity, in the context of TNF-alpha treatment. Notably, ectopic expression of SH3RF2 effectively prevents apoptosis in cancer cells and enhances cell migration, colony formation and tumor growth in vivo. Taken together, our results suggest that SH3RF2 is an oncogene that may be a definitive regulator of PAK4. Therefore, SH3RF2 may represent an effective therapeutic target for cancer treatment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据