4.7 Article

Power optimization of an endoreversible closed intercooled regenerated Brayton cycle

期刊

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.ijthermalsci.2004.06.002

关键词

finite-time thermodynamics; Brayton cycle; intercooled; regenerated; power; optimization

向作者/读者索取更多资源

In this paper, power is optimized for an endoreversible closed intercooled regenerated Brayton cycle coupled to constant-temperature heat reservoirs in the viewpoint of finite-time thermodynamics (FTT) or entropy generation minimization (EGM). The effects of some design parameters, including the cycle heat reservoir temperature ratio and total heat exchanger inventory, on the maximum power and the corresponding efficiency are analyzed by numerical examples. The analysis shows that the cycle dimensionless power can be optimized by searching the optimum heat conductance distributions among the hot- and cold-side heat exchangers, the regenerator and the intercooler for fixed total heat exchanger inventory, and by searching the optimum intercooling pressure ratio. When the optimization is performed with respect to the total pressure ratio of the cycle, the maximum dimensionless power can be maximized again. (C) 2004 Elsevier SAS. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据