4.3 Article

Spatiotemporal visualization of long-term potentiation and depression in the hippocampal CA1 area

期刊

HIPPOCAMPUS
卷 15, 期 1, 页码 68-78

出版社

WILEY
DOI: 10.1002/hipo.20031

关键词

LTP; LTD; stimulus frequency; temporal pattern; spatial pattern

向作者/读者索取更多资源

Long-term potentiation (LTP) in the CA1 area of the hippocampus depends critically on the statistical characteristics of its stimulus. The ability of optical imaging to record spatial distribution has made it possible to examine systematically the effect of higher-order statistical characteristics, such as the correlation between successive pairs of interstimulus intervals (ISIS) on the induction of LTP. Therefore, the function of frequency (first-order) and temporal pattern (second-order) was examined using this imaging technique. To investigate the dependence of LTP on frequency, periodic stimuli with the same number of pulses were applied at different frequencies (1-10 Hz, n = 200) to Schaffer commissural-collateral fibers. While stimulus frequencies from 2-10 Hz induced LTP of varying magnitudes and low-frequency stimuli (1 Hz) induced long-term depression (LTD), spatial distribution remained consistent. These results suggest that induction frequency has a greater effect on the magnitude of LTP than on its spatial distribution. By employing nonperiodic stimuli at the same mean frequency (2 Hz), the effect of varying the temporal structure of a stimulus was also investigated. As the correlation of successive ISIS was increased from negative to positive, not only did the magnitude of LTP increase, there was also a statistically significant change in the spatial distribution of LTP. Interestingly, when a strong negatively correlated stimulus was applied, both LTP and LTD were simultaneously observed in the CA1 area. It was also found that the magnitude of LTP 200-300 mu m distal to the cellular layer was larger than that of the LTP induced proximal (< 100 mu m) to that layer. These results support the hypothesis that the spatial distribution of LTP throughout the hippocampus relies principally on the temporal patterning of input stimulation. This insight into the structure of the CA1 neural network may reveal the importance of stimulus timing events in! the spatial encoding of memories. (c) 2004 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据