4.6 Article

Phosphoaspirin (MDC-43), a novel benzyl ester of aspirin, inhibits the growth of human cancer cell lines more potently than aspirin: a redox-dependent effect

期刊

CARCINOGENESIS
卷 30, 期 3, 页码 512-519

出版社

OXFORD UNIV PRESS
DOI: 10.1093/carcin/bgp015

关键词

-

类别

资金

  1. National Institutes of Health [2R01 CA92423, R01 CA101019]

向作者/读者索取更多资源

Aspirin is chemopreventive against colon and probably other cancers, but this effect is relatively weak and its chronic administration to humans is associated with significant side effects. Because of these limitations, extensive effort has been exerted to improve the pharmacological properties of aspirin. We have determined the anticancer activity and mechanisms of action of the novel para positional isomer of phosphoaspirin [P-ASA; MDC-43; 4-((diethoxyphosphoryloxy)methyl)phenyl 2-acetoxybenzoate]. P-ASA inhibited the growth of 10 human cancer cell lines originating from colon, lung, liver, pancreas and breast, at least 18- to 144-fold more potently than conventional aspirin. P-ASA achieved this effect by modulating cell kinetics; compared with controls, P-ASA reduced cell proliferation by up to 68%, increased apoptosis 5.5-fold and blocked cell cycle progression in the G(2)/M phase. P-ASA increased intracellular levels of reactive oxygen species (ROS), depleted glutathione levels and modulated cell signaling predominantly through the mitogen-activated protein kinase (p38 and c-jun N-terminal kinase), cyclooxygenase (COX) and nuclear factor-kappa B pathways. P-ASA targeted the mitochondria, increasing mitochondrial superoxide anion levels; this effect on ROS led to collapsed mitochondrial membrane potential and triggered the intrinsic apoptotic pathway. The antioxidant N-acetyl cysteine abrogated the cell growth inhibitory and signaling effects of P-ASA, underscoring the centrality of ROS in its mechanism of action. Our results, establishing P-ASA as a potent inhibitor of the growth of several human cancer cell lines, suggest that it may possess broad anticancer properties. We conclude that the novel P-ASA is a promising anticancer agent, which merits further evaluation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据