4.6 Article

Novel mechanism for obesity-induced colon cancer progression

期刊

CARCINOGENESIS
卷 30, 期 4, 页码 690-697

出版社

OXFORD UNIV PRESS
DOI: 10.1093/carcin/bgp041

关键词

-

类别

资金

  1. Michigan Agriculture Experiment Station
  2. National Cancer Institute [R03CA130033]

向作者/读者索取更多资源

Adipose tissue secretes factors linked to colon cancer risk including leptin. A hallmark of cancer is sustained angiogenesis. While leptin promotes angiogenesis in adipose tissue, it is unknown whether leptin can induce epithelial cells to produce factors that may drive angiogenesis, vascular development and therefore cancer progression. The purpose of this study was to compare the effects of leptin-stimulated colon epithelial cells differing in adenomatous polyposis coli (Apc) genotype (gatekeeper tumor suppressor gene for colon cancer) on angiogenesis. We employed novel colonic epithelial cell lines derived from the Immorto mouse [young adult mouse colon (YAMC)] and the Immorto-Min mouse [Immorto-Min colonic epithelial cell (IMCE)], which carries the Apc Min mutation, to study the effects of leptin-stimulated colon epithelial cells on angiogenesis. We utilized ex vivo rat mesenteric capillary bioassay and human umbilical vein endothelial cell (HUVEC) models to study angiogenesis. IMCE cells stimulated with leptin produced significantly more vascular endothelial growth factor (VEGF) than YAMC (268 +/- 18 versus 124 +/- 8 pg/ml; P < 0.01) cells. Leptin treatment induced dose-dependent increases in VEGF only in IMCE cells. Conditioned media from leptin (50 ng/ml)-treated IMCE cells induced significant capillary formation compared with control, which was blocked by the addition of a neutralizing antibody against VEGF. Conditioned media from leptin-treated IMCE cells also induced HUVEC cell proliferation, chemotaxis, upregulation of adhesion proteins and cell-signaling activation resulting in nuclear factor kappa B nuclear translocation and DNA binding due to VEGF. This is the first study demonstrating that leptin can induce preneoplastic colon epithelial cells to orchestrate VEGF-driven angiogenesis and vascular development, thus providing a specific mechanism and potential target for obesity-associated cancer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据