4.6 Article

Selenite reactivates silenced genes by modifying DNA methylation and histones in prostate cancer cells

期刊

CARCINOGENESIS
卷 29, 期 11, 页码 2175-2181

出版社

OXFORD UNIV PRESS
DOI: 10.1093/carcin/bgn179

关键词

-

类别

资金

  1. National Cancer Institute [CA114281]
  2. Office of Research and Development
  3. Biomedical Laboratory Research and Development Service
  4. Department of Veterans Affairs

向作者/读者索取更多资源

DNA hypermethylation is a common epigenetic alteration in human prostate cancer and is considered to contribute to development of this disease. Accumulating data suggest that dietary factors may alter cancer risk by modifications of epigenetic processes in the cell. The present study was designed to investigate whether selenium (Se) would alter epigenetic events to regulate methylation-silenced genes in human prostate cancer cells. DNA methylation, histone modifications and gene expression were studied in LNCaP cells after selenite treatment using polymerase chain reaction, western blot analysis, chromatin immunoprecipitation assay and enzymatic activity assay. Our study shows that selenite treatment caused partial promoter DNA demethylation and reexpression of the pi-class glutathione-S-transferase (GSTP1) in LNCaP cells in a dose- and time-dependent manner. Selenite treatment decreased messenger RNA levels of DNA methyltransferases (DNMTs) 1 and 3A and protein levels of DNMT1. Selenite also decreased histone deacetylase activity and increased levels of acetylated lysine 9 on histone H3 (H3-Lys 9), but decreased levels of methylated H3-Lys 9. Selenite treatment reduced levels of DNMT1 and methylated H3-Lys 9 associated with the GSTP1 promoter, but increased levels of acetylated H3-Lys 9 associated with this promoter. Additionally, selenite treatment decreased general DNA methylation and caused partial promoter demethylation and reexpression of the tumor suppressor adenomatous polyposis coli and cellular stress response 1, a gene involving tumor growth and metastasis. Our study demonstrates that Se can epigenetically modulate DNA and histones to activate methylation-silenced genes. These epigenetic modifications may contribute to cancer prevention by Se.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据