4.4 Article

Analysis of gene expression in MOG-induced experimental autoimmune encephalomyelitis after treatment with a novel brain-penetrating antioxidant

期刊

JOURNAL OF MOLECULAR NEUROSCIENCE
卷 27, 期 1, 页码 125-135

出版社

HUMANA PRESS INC
DOI: 10.1385/JMN:27:1:125

关键词

multiple sclerosis (MS); experimental autoimmune encephalomyelitis (EAE); myelin oligodendrocyte glycoprotein (MOG); gene expression; antioxidants; AD4

向作者/读者索取更多资源

Accumulating data from experimental studies indicate that oxidative stress has a major role in the pathogenesis of multiple sclerosis (MS). It has been suggested that local production of reactive oxygen species, probably by macrophages, mediates axonal damage in both MS patients and the mouse model experimental autoimmune encephalomyelitis (EAE). We have shown previously that our novel brain-penetrating antioxidant, N-acetylcysteine amide (AD4), reduces the clinical and pathological symptoms, including inflammation and axonal damage in myelin oligodendrocyte glycoprotein (MOG)-induced chronic EAE in mice. The aim of this study was to examine the molecular mechanism by which AD4 exerts protection in MOG-induced EAE mice. Therefore, we analyzed gene-expression profile in the spinal cords of MOG-induced chronic EAE mice and compared them with MOG-induced mice treated with AD4, using a cDNA microarray. We found that MOG treatment up-regulated genes encoding growth factors, cytokines, death receptors, proteases, and myelin structure proteins, whereas MOG- and AD4-treated mice demonstrated gene expression profiles similar to that seen in naive healthy mice. In conclusion, our study shows that chronic AD4 administration suppresses the induction of various pathological pathways that play a role in EAE and probably in MS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据