4.5 Article

Magnesian andesite and dacite lavas from Mt. Shasta, northern California: products of fractional crystallization of H2O-rich mantle melts

期刊

CONTRIBUTIONS TO MINERALOGY AND PETROLOGY
卷 148, 期 5, 页码 542-565

出版社

SPRINGER
DOI: 10.1007/s00410-004-0619-6

关键词

-

向作者/读者索取更多资源

Mt. Shasta andesite and dacite lavas contain high MgO (3.5-5 wt.%), very low FeO*/MgO (1-1.5) and 60-66 wt.% SiO2. The range of major and trace element compositions of the Shasta lavas can be explained through fractional crystallization (similar to50-60 wt.%) with subsequent magma mixing of a parent magma that had the major element composition of an H2O-rich primitive magnesian andesite (PMA). Isotopic and trace element characteristics of the Mt. Shasta stratocone lavas are highly variable and span the same range of compositions that is found in the parental basaltic andesite and PMA lavas. This variability is inherited from compositional variations in the input contributed from melting of mantle wedge peridotite that was fluxed by a slab-derived, fluid-rich component. Evidence preserved in phenocryst assemblages indicates mixing of magmas that experienced variable amounts of fractional crystallization over a range of crustal depths from similar to25 to similar to4 km beneath Mt. Shasta. Major and trace element evidence is also consistent with magma mixing. Pre-eruptive crystallization extended from shallow crustal levels under degassed conditions (similar to4 wt.% H2O) to lower crustal depths with magmatic H2O contents of similar to10-15 wt.%. Oxygen fugacity varied over 2 log units from one above to one below the Nickel-Nickel Oxide buffer. The input of buoyant H2O-rich magmas containing 10-15 wt.% H2O may have triggered magma mixing and facilitated eruption. Alternatively, vesiculation of oversaturated H2O-rich melts could also play an important role in mixing and eruption.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据