4.4 Article

Adaptive multiscale finite-volume method for multiphase flow and transport in porous media

期刊

MULTISCALE MODELING & SIMULATION
卷 3, 期 1, 页码 50-64

出版社

SIAM PUBLICATIONS
DOI: 10.1137/030600795

关键词

subsurface flow; multiscale physics; upscaling; finite-volume method; multiphase flow; adaptivity

向作者/读者索取更多资源

We present a multiscale finite-volume (MSFV) method for multiphase flow and transport in heterogeneous porous media. The approach extends our recently developed MSFV method for single-phase flow. We use a sequential scheme that deals with flow (i.e., pressure and total velocity) and transport (i.e., saturation) separately and differently. For the flow problem, we employ two different sets of basis functions for the reconstruction of a conservative fine-scale total velocity field. Our basis functions are designed to have local support, and that allows for adaptive computation of the flow field. We use a criterion based on the time change of the total mobility field to decide when and where to recompute our basis functions. We show that at a given time step, only a small fraction of the basis functions needs to be recomputed. Numerical experiments of difficult two-dimensional and three-dimensional test cases demonstrate the accuracy, computational efficiency, and overall scalability of the method.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据