4.8 Article

Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties

期刊

CARBON
卷 69, 期 -, 页码 467-480

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2013.12.050

关键词

-

资金

  1. National Natural Science Foundation of China [51203038]
  2. Starting Foundation for Scholars of Hangzhou Normal University [2012QDL022]
  3. Scientific Research Fund of Zhejiang Provincial Education Department [Y201224314]

向作者/读者索取更多资源

Epoxy composites filled with both graphene oxide (GO) and diglycidyl ether of bisphenol-A functionalized GO (DGEBA-f-GO) sheets were prepared at different filler loading levels. The correlations between surface modification, morphology, dispersion/exfoliation and interfacial interaction of sheets and the corresponding mechanical and thermal properties of the composites were systematically investigated. The surface functionalization of DGEBA layer was found to effectively improve the compatibility and dispersion of GO sheets in epoxy matrix. The tensile test indicated that the DGEBA-f-GO/epoxy composites showed higher tensile modulus and strength than either the neat epoxy or the GO/epoxy composites. For epoxy composite with 0.25 wt% DGEBA-f-GO, the tensile modulus and strength increased from 3.15 +/- 0.11 to 3.56 +/- 0.08 GPa (similar to 13%) and 52.98 +/- 5.82 to 92.94 +/- 5.03 MPa (similar to 75%), respectively, compared to the neat epoxy resin. Furthermore, enhanced quasi-static fracture toughness (KO was measured in case of the surface functionalization. The GO and DGEBA-f-GO at 0.25 wt% loading produced similar to 26% and similar to 41% improvements in K-IC values of epoxy composites, respectively. Fracture surface analysis revealed improved interfacial interaction between DGEBA-f-GO and matrix. Moreover, increased glass transition temperature and thermal stability of the DGEBA-f-GO/epoxy composites were also observed in the dynamic mechanical properties and thermo-gravimetric analysis compared to those of the GO/epoxy composites. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据