4.8 Article

Highly ordered porous carbon/wax composites for effective electromagnetic attenuation and shielding

期刊

CARBON
卷 77, 期 -, 页码 130-142

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2014.05.014

关键词

-

资金

  1. 973 Project [2013CB934001]
  2. NSF of China [51172024, 51372022, 51302011]
  3. China PSF [2012M520165]
  4. Fundamental Research Funds for the Central Universities [FRF-TP-13-036A]

向作者/读者索取更多资源

We have demonstrated a highly ordered porous carbon (HOPC) as an effective electromagnetic absorber. The unique porous structures allow HOPC to possess high surface area and establish effective three-dimensional (3D) conductive interconnections at very low filler loading, which is responsible for effective electrical loss in terms of dissipating the induced current in the corresponding wax composites. Owing to the 3D porous frame, the wax composites with 1 and 5 wt% HOPC have shown effective bandwidth similar to 2 and similar to 4.5 GHz, respectively, which is considerably competitive to the performance found in the carbon nanotube- (CNT) and graphene-based composites of much higher filler loadings. This concept based on porous absorbers demonstrates more advantages in the fabrication of lightweight microwave-absorbing materials. Furthermore, the composite with 20 wt% HOPC has exhibited highly effective electromagnetic shielding performance up to 50 dB, which competes well with what has already been achieved in the composites embedded with CNTs and graphene. The fundamental mechanism based on electrical conductivity and complex impedance suggests specific strategies in the achievement of high-performance composites for electromagnetic attenuation and shielding. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据