4.8 Article

High strength micron size carbon fibers from polyacrylonitrile-carbon nanotube precursors

期刊

CARBON
卷 77, 期 -, 页码 442-453

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2014.05.049

关键词

-

资金

  1. DARPA
  2. Army Research Office [W911NF-10-1-0098]

向作者/读者索取更多资源

An improved, high strength, carbon fiber derived from islands-in-a-sea bi-component gel spun polyacrylonitrile (PAN)-carbon nanotube (CNT) precursor fibers containing 1 wt% mixture of single, double, and few walled CNTs was developed. Microscale experiments with properly designed MEMS tools provided the mechanical properties of individual, 1-mu m diameter carbon filaments, which were isolated from bundles of 407 fibers. The statistics of the mechanical strength were described well by the cumulative Weibull probability density function that resulted in characteristic strength of 6.2 GPa and a Weibull modulus of 4.5, while the highest tensile strength and Young's modulus values were 7.3 GPa and 318 GPa, respectively. At the lower end of the spectrum, the strength values correlated well with predictions based on an effective flaw size obtained from fracture cross-sections. On the other hand, the failure cross-sections of the high strength carbon fibers contained a large number of long and oriented CNTs but no discernible flaws. The high interfacial strength between the CNTs and the surrounding carbon resulted in fracture and telescopic pull-out of the CNTs, which was corroborated by individual CNT pull-out experiments with MEMS tools inside an SEM, and in situ fiber failure observations of telescopic pull-out of CNTs inside a TEM. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据