4.8 Article

Nano-scale mapping of lattice strain and orientation inside carbon core SIC fibres by synchrotron X-ray diffraction

期刊

CARBON
卷 79, 期 -, 页码 85-92

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2014.07.045

关键词

-

资金

  1. Engineering and Physical Sciences Research Council [1135963, EP/I020691/1, EP/H003215/1] Funding Source: researchfish
  2. EPSRC [EP/I020691/1, EP/H003215/1] Funding Source: UKRI

向作者/读者索取更多资源

The strongest fibres available today are carbon-based, made from carbon nanotubes (CNTs) or reduced graphene oxide flakes (RGOFs). Carbon fibres (CFs) were first developed half a century ago. Control of the thermal, chemical and mechanical processing allows obtaining desired combination of structure, strength and stiffness. In practical use, CFs are typically incorporated into larger scale systems that require multi-scale characterisation. In the present study we considered an aerospace composite consisting of titanium alloy matrix reinforced with unidirectional silicon carbide fibres with carbon monofilament core. By combining synchrotron-based imaging and nano-focused X-ray beam scattering with Focused Ion Beam stress evaluation, we construct detailed maps of structure and strain inside this material. Eigenstrain modelling was used to reconstruct the full residual strain state within the fibre cross-section. The joined-up experimental and theoretical approach allows extracting information about fibre structure down to the nanoscale, developing insight into its processing history, and revealing the existence of significant residual strains that have a strong effect on the performance of CFs in service. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据