4.8 Article

On the stability of conventional and nano-structured carbon-based catalysts in the oxidative dehydrogenation of ethylbenzene under industrially relevant conditions

期刊

CARBON
卷 77, 期 -, 页码 329-340

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2014.05.036

关键词

-

资金

  1. Dutch Technology Foundation STW
  2. Technology Program of the Ministry of Economic Affairs, Agriculture and Innovation
  3. CBI

向作者/读者索取更多资源

Relevant carbon-based materials, home-made carbon-silica hybrids, commercial activated carbon, and nanostructured multi-walled carbon nanotubes (MWCNT) were tested in the oxidative dehydrogenation of ethylbenzene (EB). Special attention was given to the reaction conditions, using a relatively concentrated EB feed (10 vol.% EB), and limited excess of O-2 (O-2:EB = 0.6) in order to work at full oxygen conversion and consequently avoid O-2 in the downstream processing and recycle streams. The temperature was varied between 425 and 475 degrees C, that is about 150-200 degrees C lower than that of the commercial steam dehydrogenation process. The stability was evaluated from runs of 60 h time on stream. Under the applied reactions conditions, all the carbon-based materials are apparently stable in the first 15 h time on stream. The effect of the gasification/burning was significantly visible only after this period where most of them fully decomposes. The carbon of the hybrids decomposes completely rendering the silica matrix and the activated carbon bed is fully consumed. Nano structured MWCNT is the most stable; the structure resists the demanding reaction conditions showing an EB conversion of similar to 30% (but deactivating) with a steady selectivity of similar to 80%. The catalyst stability under the ODH reaction conditions is predicted from the combustion apparent activation energies. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据