4.8 Article

Graphene oxide/hydroxyapatite composite coatings fabricated by electrophoretic nanotechnology for biological applications

期刊

CARBON
卷 67, 期 -, 页码 185-197

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2013.09.080

关键词

-

资金

  1. National Natural Science Foundation of China [31070846, 30870623]
  2. National High Technology Research and Development Program of China [2011AA030103]
  3. National Basic Research Program (973) of China [2009CB930004, 2012CB619102]

向作者/读者索取更多资源

Graphene oxide (GO) was firstly employed as nanoscale reinforcement fillers in hydroxyapatite (HA) coatings by a cathodic electrophoretic deposition process, and GO/HA coatings were fabricated on pure Ti substrate. The transmission electron microscopy observation and particle size analysis of the suspensions indicated that HA nanoparticles were uniformly decorated on GO sheets, forming a large GO/HA particle group. The addition of GO into HA coatings could reduce the surface cracks and increase the coating adhesion strength from 1.55 +/- 0.39 MPa (pure HA) to 2.75 +/- 0.38 MPa (2 wt.% GO/HA) and 3.3 +/- 0.25 MPa (5 wt.% GO/HA), respectively. Potentiodynamic polarization and electrochemical impedance spectroscopy studies indicated that the GO/HA composite coatings exhibited higher corrosion resistance in comparison with pure HA coatings in simulated body fluid. In addition, superior (around 95% cell viability for 2 wt.% GO/HA) or comparable (80-90% cell viability for 5 wt.% GO/HA) in vitro biocompatibility were observed in comparison with HA coated and uncoated Ti substrate. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据