4.8 Article

Reinforcement in melt-processed polymer-graphene composites at extremely low graphene loading level

期刊

CARBON
卷 78, 期 -, 页码 243-249

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2014.06.077

关键词

-

资金

  1. Science Foundation Ireland, through the CRANN Pathfinder program

向作者/读者索取更多资源

We have prepared polymer nanocomposites reinforced with exfoliated graphene layers solely via melt blending. For this study polyethylene terephthalate (PET) was chosen as the polymer matrix due to its myriad of current and potential applications. PET and PET/graphene nanocomposites were melt compounded on an internal mixer and the resulting materials were compression molded into films. Transmission electron microscopy and scanning electron microscopy revealed that the graphene flakes were randomly orientated and well dispersed inside the polymer matrix. The PET/graphene nanocomposites were found to be characterized by superior mechanical properties as opposed to the neat PET. Thus, at a nanofiller load as low as 0.07 wt%, the novel materials presented an increase in the elastic modulus higher than 10% and an enhancement in the tensile strength of more than 40% compared to pristine PET. The improvements in the tensile strength were directly correlated to changes in elongation at break and indirectly correlated to the fracture initiation area. The enhancements observed in the mechanical properties of polymer/graphene nanocomposites achieved at low exfoliated graphene loadings and manufactured exclusively via melt mixing may open the door to industrial manufacturing of economical novel materials with superior stiffness, strength and ductility. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据