4.2 Article Proceedings Paper

Micellization in pH-sensitive amphiphilic block copolymers in aqueous media and the formation of metal nanoparticles

期刊

FARADAY DISCUSSIONS
卷 128, 期 -, 页码 129-147

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b403414g

关键词

-

向作者/读者索取更多资源

Dynamic light scattering, potentiometric titration, transmission electron microscopy and atomic force microscopy have been used to investigate the micellar behaviour and metal-nanoparticle formation in poly(ethyleneoxide)-block-poly(2-vinylpyridine), PEO-b-P2VP, poly(hexa(ethylene glycol) methacrylate)-block-poly(2-(diethylamino)ethyl methacrylate), PHEGMA-b-PDEAEMA, and PEO-b-PDEAEMA amphiphilic diblock copolymers in water. The hydrophobic block of these copolymers (P2VP or PDEAEMA) is pH-sensitive: at low pH it can be protonated and becomes partially or completely hydrophilic leading to molecular solubility whereas at higher pH micelles are formed. These micelles consist of a P2VP or PDEAEMA core and a PEO or PHEGMA corona, respectively, where the core forming amine units can incorporate metal compounds due to coordination. The metal compounds (e.g., H2PtCl6, K2PtCl6) can either be introduced in a micellar solution, where they are incorporated within the micelle core via coordination with functional groups, or can be added to a unimer solution at low pH, where they lead to a metal-induced micellization. In these micellar nanoreactors, metal nanoparticles nucleate and grow upon reduction with sizes in the range of a few nanometers as observed by TEM. The effect of the metal incorporation method on the characteristics of the micelles and of the synthesized nanoparticles is investigated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据