4.8 Article

Graphene nanogrids for selective and fast osteogenic differentiation of human mesenchymal stem cells

期刊

CARBON
卷 59, 期 -, 页码 200-211

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2013.03.010

关键词

-

资金

  1. Research Council of Sharif University of Technology
  2. Iran Nanotechnology Initiative Council

向作者/读者索取更多资源

Graphene nanogrids (fabricated by graphene nanoribbons obtained through oxidative unzipping of multi-walled carbon nanotubes) were used as two-dimensional selective templates for accelerated differentiation of human mesenchymal stem cells (hMSCs), isolated from umbilical cord blood, into osteogenic lineage. The biocompatible and hydrophilic graphene nanogrids showed high actin cytoskeleton proliferations coinciding with patterns of the nanogrids. The amounts of proliferations were found slightly better than proliferation on hydrophilic graphene oxide (GO) sheets, and significantly higher than non-uniform proliferations on hydrophobic reduced graphene oxide (rGO) sheets and polydimethylsiloxane substrate. In the presence of chemical inducers, the reduced graphene oxide nanoribbon (rGONR) grid showed a highly accelerated osteogenic differentiation of the hMSCs (a patterned differentiation) in short time of 7 days in which the amount of the osteogenesis was similar to 2.2 folds greater than the differentiation (a uniform differentiation) on the rGO sheets. We found that although in the absence of any chemical inducers the graphene nanogrids showed slight patterned osteogenic differentiations, the graphene sheets could not present any differentiation. Therefore, the highly accelerated differentiation on the rGONR grid was assigned to both its excellent capability in adsorption of the chemical inducers and physical stresses induced by the surface topographic features of the nanogrids. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据